15^{ème} congrès de la société francophone de tabacologie, 26 novembre 2021

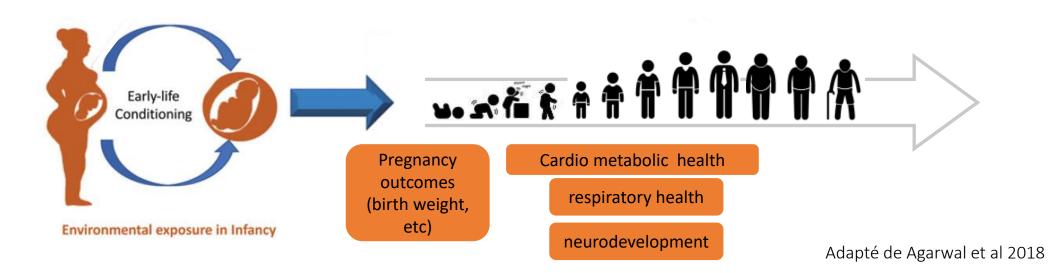
Tabagisme maternel et méthylation de l'ADN placentaire

Johanna Lepeule

INSERM U1209

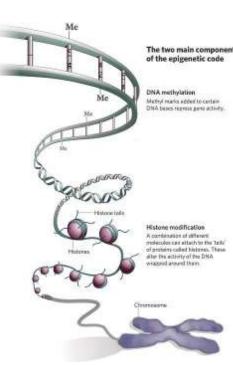
Equipe d'épidémiologie environnementale appliquée au développement et à la santé respiratoire

Early environmental exposures and the DOHaD



Epigenome : adaptation, deregulation

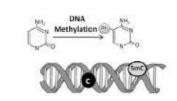
Modifiable (reprogrammation, environment)


Persist, even in the absence of the cause that established them

Epigenetic marks

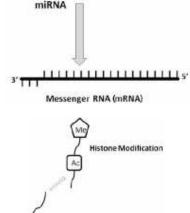
Gene expression mechanisms

- Does not depend on the DNA code
- Relatively stable over time Mitosis (cell division) Meiosis (transgenerational, limited evidence)

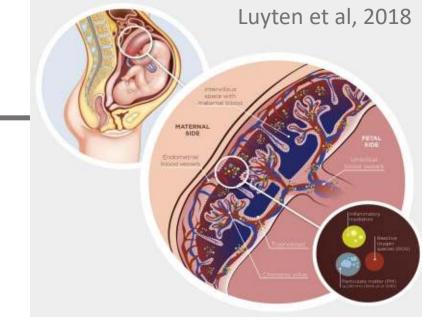


DNA methylation

^a Methyl marks added to certain DNA bases that repress gene transcription


Micro RNA Small non-coding RNA that block translation of messenger RNAs into proteins

Histone modifications Different molecules that can attach to histone tails and alter the activity of DNA


Usually, lower methylation associated with higher expression

- Most well known epigenetic mechanisms
- Reliable techniques
- Can use existing DNA collections

Adapted from Qiu, Nature, 2006

- □ Tobacco smoking can cross the placenta and expose the developing fetus (Valentino et al., 2016; Wick et al., 2010)
- □ The placenta plays a key role in fetal programming:
 - support mother's health and the development of the fetus
 - conveys nutrients and oxygen to the fetus, regulates gas and waste exchanges, hormone interactions (Murphy et al., 2006)
- □ The placenta may provide a unique record of exposures occurring during pregnancy
- Most literature focused on cord blood (Joubert 2012, Joubert 2016, Kuppers 2015, Miyake 2018), a few epigenome wide studies on placenta (Morales et 2016, Cardenas 2019, Chhabra 2014), reviewed by Nakamura 2021
- No study on women who stop smoking before pregnancy

□ identifying cigarette-induced alterations in placental DNA methylation

in women currently smoking during pregnancy

in women who quit in anticipation of pregnancy

EDEN mother-child cohort

Recruitment: 2003 to 2006 (University hospitals, Poitiers and Nancy)

Recruitment, n=2002 (before week 24)

- 5mm x 5mm samples in the middle of the placenta
- Fetal side
- Collected at birth and frozen -80°C
- n=568 samples
- Illumina 450k beadchip ≈ 480 000 CpG sites
- Global methylation, repetitive Alu and LINE-1

Conception

13, 26, 33 weeks of gestation

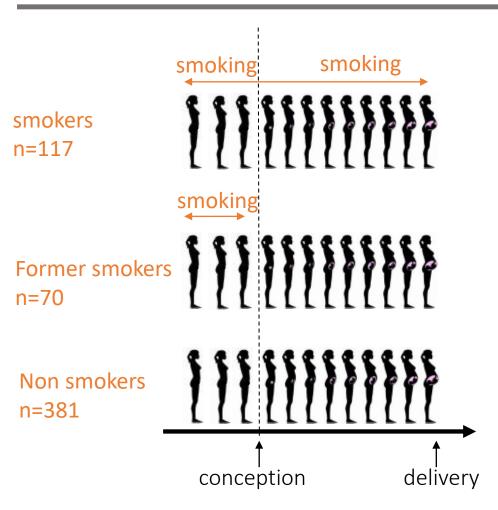
-Growth by repeated ultrasonography (13, 26, 33 weeks of gestation)

Birth

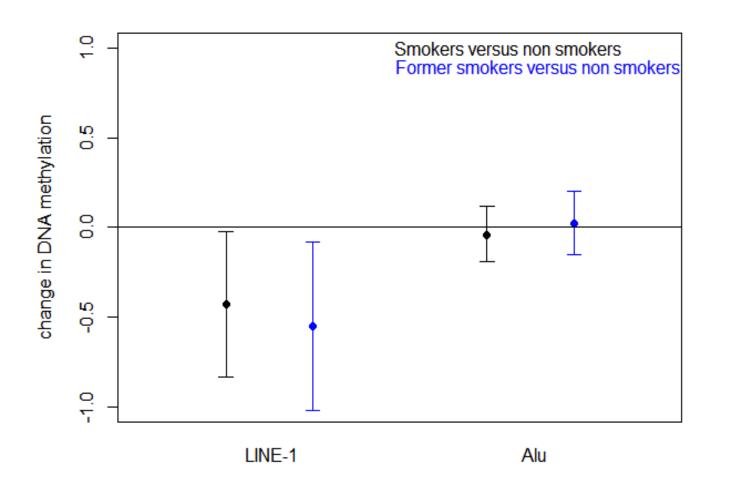
-Growth (weight, height, head circumference) -Biological samples (placenta, cord blood, etc) Age 3y -Growth -Neurodevelopment tests

Age 5 y -Growth -Neurodevelopment tests -Lung function test

Age 10 y -Growth -Neurodevelopment -Lung function (n=200, as part


of HELIX project)

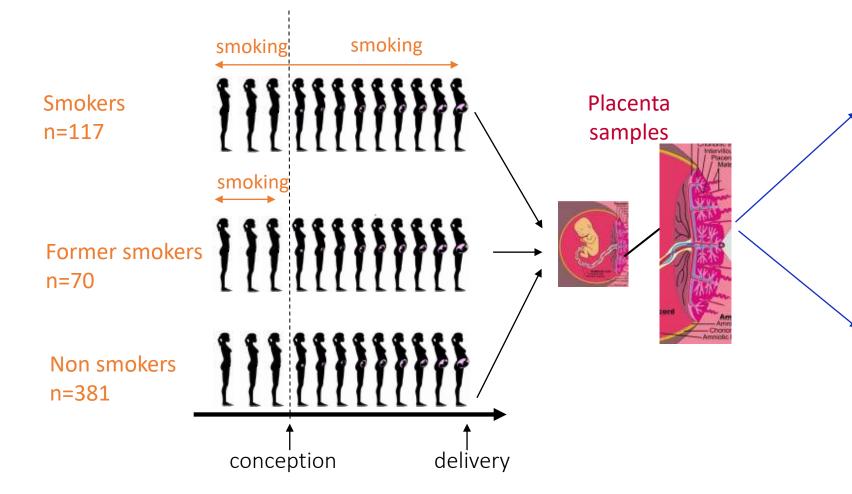
Interviews and questionnaires : including data on socio-demographic factors


Birth weight (g)3304488Gestational age (weeks)39.81.7Maternal age (yrs)295
Maternal age (yrs) 29 5
BMI 22.9 4.2
Cigarettes /day 1.7 3.5

ŝ		l	
2	2	c	~

	Category	%
Centre	Poitiers vs. Nancy	43% vs. 57%
Sex	Male vs. Female	52% vs. 48%
Parity		
-	Primipare	45
	1 child	38
	≥2 children	17
Educati	on	
	<high school<="" td=""><td>37</td></high>	37
	High school	23
>	=High school+2 years	41

- 425 878 (after QC) CpG specific analyses
 - Robust linear regression
 - False Discovery Rate correction (Benjamini and Hochberg, 1995)
 - All models adjusted for:
 - Maternal age, BMI, education, parity, centre
 - Paternal smoking status at conception
 - Gestational duration, season of conception, sex of the baby
 - Technical factors: batch, plate, chip
 - Cell type proportions according to a ref-free method (Houseman et al 2016)
- Differentially Methylated Regions (DMR):
 - Comb-p (Pedersen et al., 2012)
 - Regions enriched for low p-values
 - Corrects for autocorrelation within 500 bp
 - Adjust for multiple testing
 - At least 2 probes per region



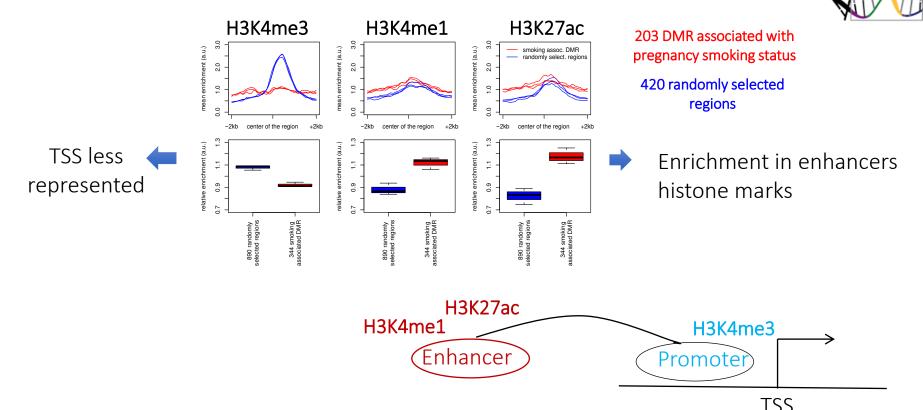
Average methylation level 26.1 (±1.9) for *LINE-1* 16.1 (±1.0) for *Alu*

Armstrong et al 2016 (n=96, maternal side of placenta): no difference in placenta methylation for LINE-1

152 differentially methylated regions only present in the placenta of current smokers: "reversible" alterations of DNA methylation,

26 differentially methylated regions in former smokers : "persistence" in the placenta of former smokers, supports the hypothesis of an "epigenetic memory"

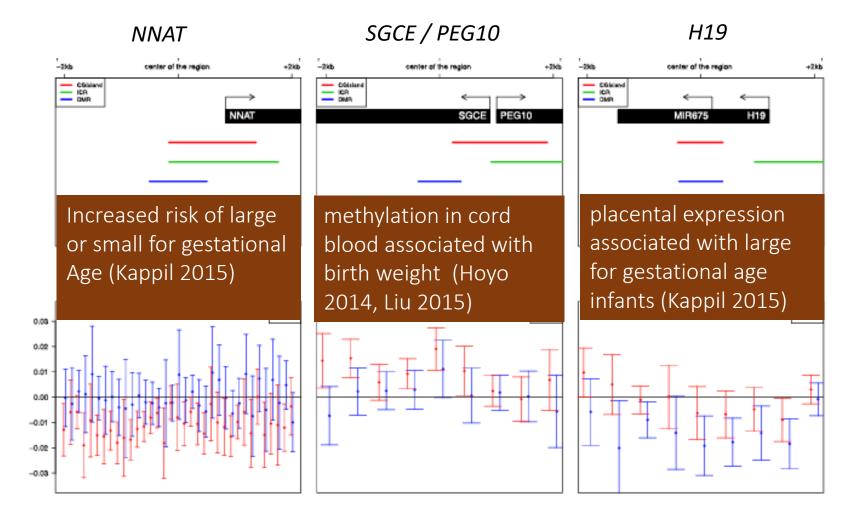
DMR sensitive to exposure to tobacco are enriched in enhancer histone marks



(with at least 2 CpGs within a 2000 bp window) including 1023 CpGs

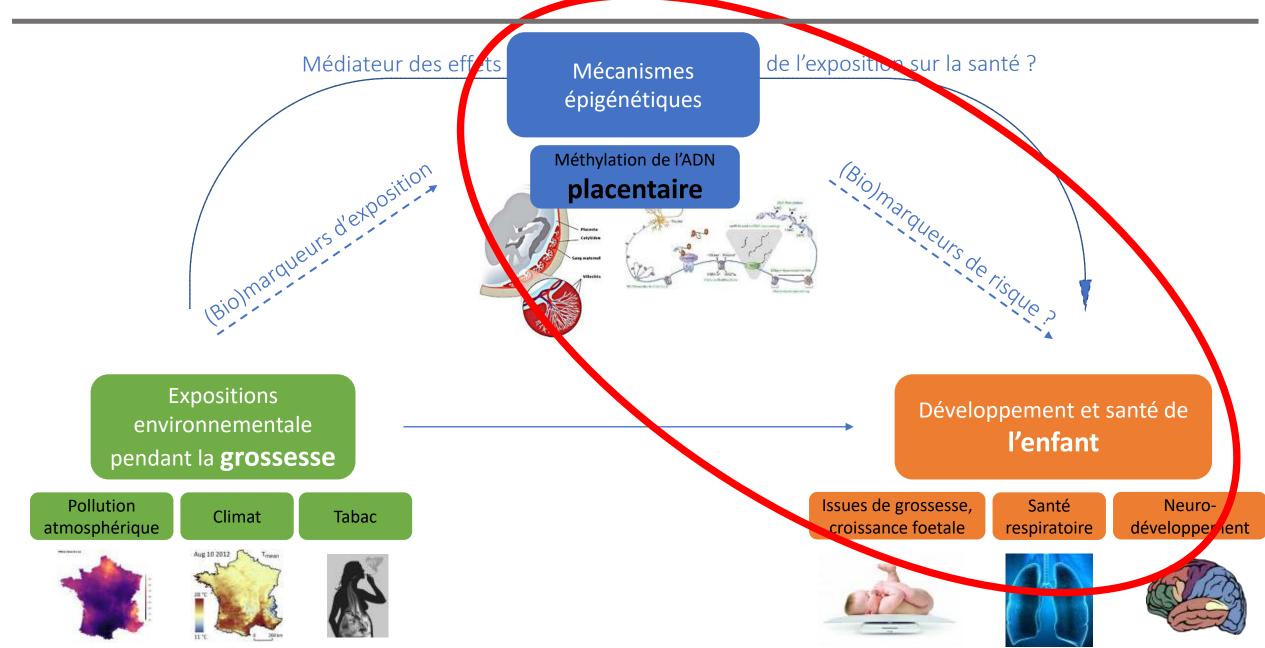
. Kinadiwa da ina takati a takati

ENCODE



eden

The 203 DMRs included 10 imprinted genes



- Suggest epigenetic memory of maternal tobacco smoking
- Gene promoter regions little impacted by maternal smoking
- Imprinted genes and enhancers preferentially affected by maternal smoking

Conclusions

- Epigenetic epidemiology : investigate and suggest biological mechanisms behind epidemiological associations
 - Biomarker of exposure and / or disease, mediator, adaptative mechanisms
 - In collaboration with experimental studies
 - Association → mechanisms → causation
- Limits :
 - Evidence for causation is limited
 - Subtle signal
 - Functional consequences, whole epigenetic machinery: histones, micro RNAs
 - Covering parts of the genome (450k, EPIC)
 - Consortium

Future steps

Funding

Fondation de France

alliance nationale pour les sciences de la vie et de la santé

Acknowledgments

IAB INSERM – CNRS
 Sophie Rousseaux
 Emie Seyve
 Florent Chuffart
 Ekaterina Bourova-Flin
 Meriem Benmerad
 Remy Slama
 Valérie Siroux
 Saadi Khochbin

- **CEA**: Jorg Tost
- Harvard T.H. Chan School of public health: Joel Schwartz
- Air quality monitoring networks: Julien
 Galineau, Agnès Hulin.
- INSERM: Daniel Vaiman, Barbara Heude, Marie-Aline Charles, Anne Forhan

