

STIMULATION CÉRÉBRALE NON INVASIVE DANS LA RÉDUCTION DU CRAVING

Pr Benoit TROJAK, Dr Benjamin PETIT

Service Hospitalo-Universitaire d'Addictologie, CHU de Dijon

Les auteurs déclarent que ce travail a été réalisé en toute indépendance de l'industrie du tabac et qu'ils n'ont aucun lien d'intérêt avec l'industrie du tabac, de l'alcool et des jeux, ainsi que l'industrie de la cigarette électronique.

Les auteurs n'ont pas de lien d'intérêt.

DÉVELOPPEMENT D'UNE ADDICTION

1. Initiation:

- 1^{ères} consommations
- Plaisir, euphorie (système de récompense) = renforcement positif

2. Consommations excessives et chroniques :

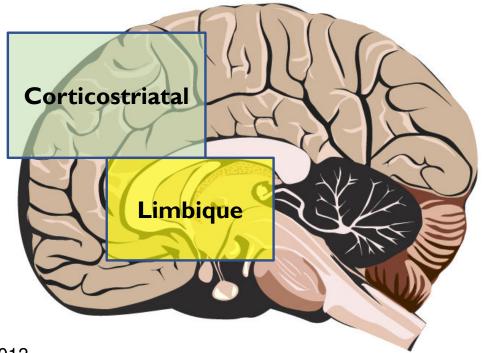
- Tolérance pharmacologique
- Manifestations de sevrage à l'arrêt = renforcement négatif

3. Conséquences neurobiologiques:

- Craving
- Consommation compulsive (perte de contrôle)

ADDICTION ET CRAVING

- Addiction = Incapacité de s'abstenir de consommer malgré les conséquences négatives
- Craving (désir ou une envie intense de consommer) puis consommation compulsive
- Le craving :
 - 1. Maintien le comportement de recherche de produit
 - 2. Facteur prédictif de rechute après abstinence
- Symptôme central cible de choix

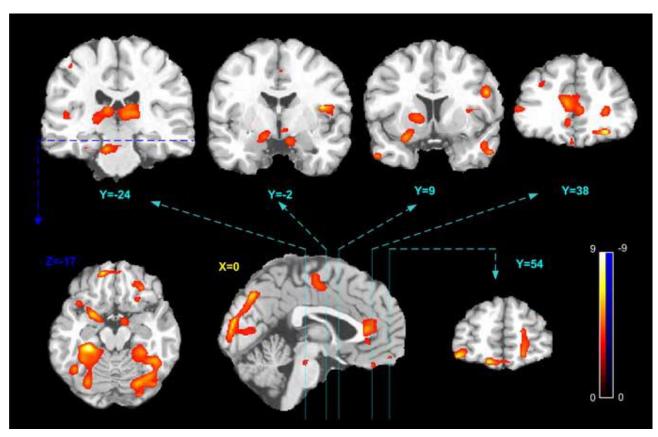


NEUROBIOLOGIE DU CRAVING

2 substrats neurobiologiques:

1. Altération des circuits dopaminergiques

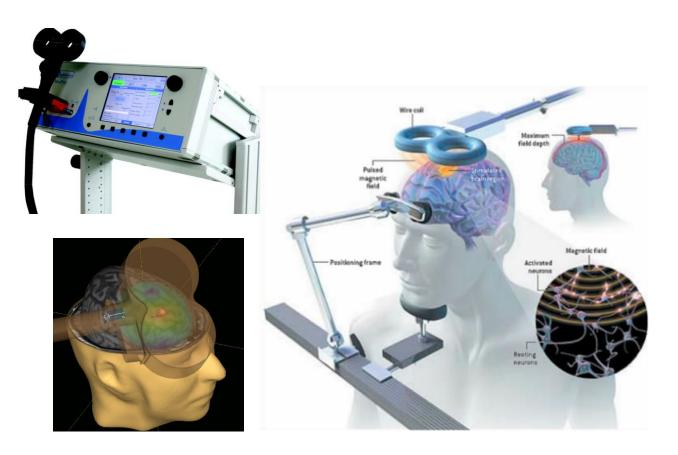
2. Perturbation du contrôle préfrontal



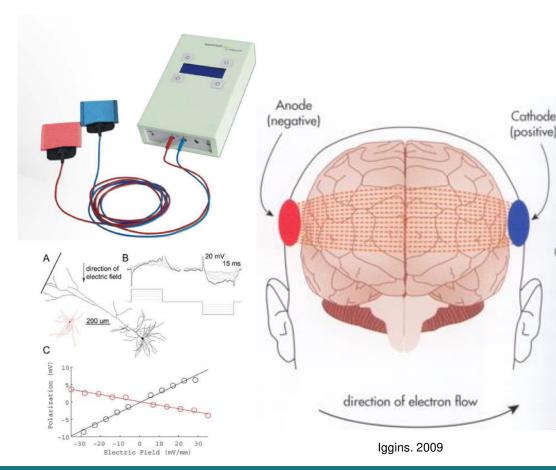
Sinha R, Curr Opin Neurobiol 2013

CRAVING ET SEVRAGE TABAGIQUE

- Envies de fumer induites par l'abstinence = activation anormale de CPF
- Etude Wang: 15 fumeurs, abstinence (12h-14h) tabac vs satiété, IRM/ASL



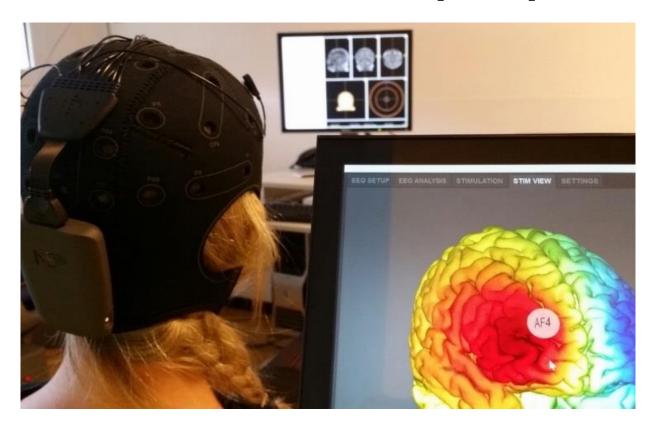
Association du craving-induit par l'abstinence avec les changements régionaux du flux sanguin cérébral



STIMULATION CÉRÉBRALE NON INVASIVE ?

Stimulation Magnétique Transcrânnienne répétée (SMTr)

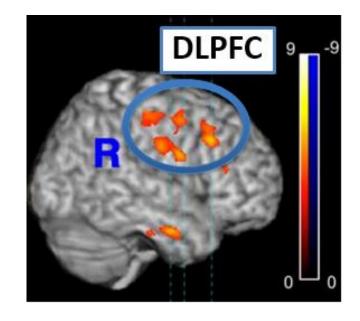
Stimulation Transcrânienne à Courant Continu (STCC)



STIMULATION CÉRÉBRALE NON INVASIVE ?

Stimulation Magnétique Transcrânnienne répétée (SMTr)

Stimulation Transcrânienne à Courant Continu (STCC)

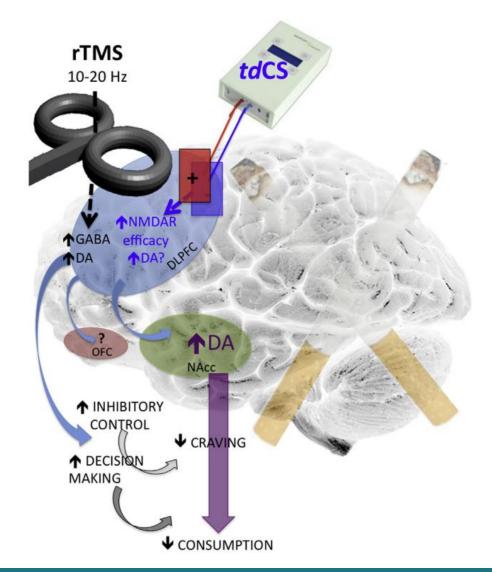


MÉCANISMES D'ACTION DE LA STIMULATION CÉRÉBRALE

Stimulation du CPFDL =

Réduction du craving

- □ de la sévérité des troubles addictifs


Amélioration des fonctions cognitives

Processus de prise de décision

∠ impulsivité, ∠ prise de risque, ∠ choix d'une récompense immédiate

STIMULATION CÉRÉBRALE POUR TRAITER LE TABAGISME ?

« La SMTr et la STCC représentent deux de nouvelles modalités de traitement » (Wing 2013)

EFFICACITÉ SUR LE CRAVING

• 1^{ère} méta-analyse en 2013

Study name

Amiaz et al. (2009)

Barth et al. (2011)

Boggio et al. (2008)

SMTr et STCC sur le CPFCL : effet sur le craving ?

rTMS

rTMS

tDCS

Technique Stimulation

site

Left

Left

Both

27 Boggio et al. (2009) tDCS Left Single Study 0.824 Boggio et al. (2010) tDCS Both Combined 33 0.587 22 rTMS Claudino et al. (2011) Left Single Study 0.341 Fregni et al. (2008a) (food) tDCS Combined 46 0.391 Fregni et al. (2008b) (smoking) tDCS Combined 48 0.458 Goldman et al. (2011) 19 0.427 tDCS Right Single Study Herremans et al. (2011) 31 0.08 rTMS Right Single Study Hoppner et al. (2011) rTMS Single Study 10 19 0.069 Left Johann et al. (2003) rTMS Left Single Study 2 11 0.703 Mishra et al. (2010) rTMS Right Single Study 10 45 1.165 2 Montenegro et al. (2012) tDCS Left Single Study 0.694 32 Nakamura-Palacios et al. (2011) tDCS Left Single Study 0.031 28 Taille de l'effet: Uher et al. (2005) rTMS Single Study 0.809 13 Wing et al. (2012) Bilateral Single Study 0.639 0.476 (Hedge's g) of 0.476 (CI: 0.316–0.636) 17 études : 5 nicotine, 6 food, 5 alcohol and 1 marijuana study -0.750.75 1,50 0.00

2

Single Study

Single Study

Combined

Single or combined Number of sessions Number of subjects Hedge's g

21

10

26

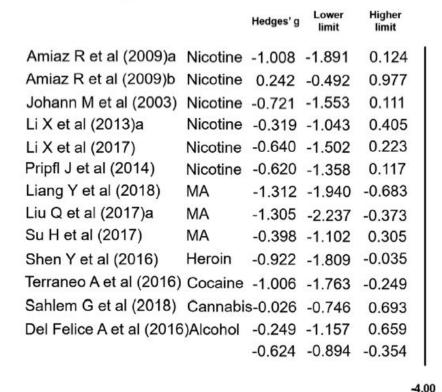
0.888

-0.104

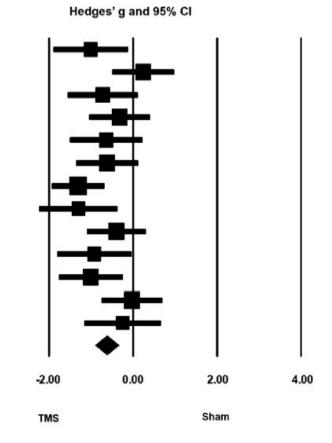
0.98

moyen (vs PCB) sur la réduction du craving

Jansen, Neurosc Biobehav Rev 2013



EFFICACITÉ SUR LE CRAVING


- 2ème méta-analyse en 2019
- SMTr : effet sur le craving ?

Taille de l'effet : moyen (actives vs PCB) sur la réduction du craving

Excitatory rTMS of the left DLPFC

Random-effects model Heterogeneity: $I^2 = 35.36 \%$ Test for overall effect; Z = -4.531 (P < 0.0001)

Zhang, Addiction 2019

EFFICACITÉ SUR LE CRAVING AU TABAC

- 3^{ème} méta-analyse en 2019
- STCC : effet sur le craving au tabac?

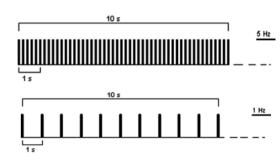
Study Name	Outcome	SMD	$\mathbf{L}\mathbf{L}$	\mathbf{UL}	<i>P</i> -value	SMD and 95% CI	
Boggio 2009	Cue-provoked craving (VAS) at posttest ^{L&D}	0.88	0.02	1.73	0.04		
Fecteau 2014	Cue-provoked craving (QSU) at posttest R&D	0.97	0.17	1.76	0.02		
Fregni 2008	Cue-provoked craving (VAS) at posttest R&D	0.51	0.08	0.94	0.02		
Kroczek 2016	Cue-provoked craving (VAS) at posttest L&O	-0.27	-1.05	0.52	0.51		
Mondino 2018	Changes in cue-provoked craving (LSQ) R&O	0.86	0.09	1.63	0.03		
Xu 2013	Cue-provoked craving (UTS) at posttest L&O	0.02	-0.38	0.42	0.93		
Yang 2017	Cue-provoked craving (VAS) at posttest L&D	0.41	0.05	0.77	0.03	T	
	Overall	0.42	0.13	0.71	0.004		
Craving assessment. LSQ: a 5-itm Likert-type questionnaire of smoking urge; QSU:							
	f Smoking Urges; UTS: urge to smoke scale; VAS	5: visual a	nalogue s	cale.		-4.00 -2.00 0.00 2.00 4.0	

Taille de l'effet : modéré (actives vs PCB) sur la réduction du craving provoqué

Questionnaire of Smoking Urges; UTS: urge to smoke scale; VAS: visual analogue scale. *tDCS protocols*. L&D: anodal-tDCS on the left DLPFC & cathodal-tDCS on DLPFC regions; R&D: anodal-tDCS on the right DLPFC & cathodal-tDCS on DLPFC regions; L&O: anodal-

tDCS on the left DLPFC & cathodal-tDCS on other regions.

SMD=0.422, SE=0.147; 95% CI=0.133-0.710; p=.004


Kang, Addictive Behaviors 2019

LIMITES...

1. PARAMÈTRES DE STIMULATIONS:

- Fréq 1 Hz, 10-20 Hz, %SM... 1 ou 2 mA,
- CPF droit ou gauche,
- Nombre de séances, d'impulsions, durée...

2. QUEL CRAVING?

- Sevrage ? Exposition ? Stimuli associé ? Stress?
- Outils de mesure : échelles, questionnaires, marqueurs physiologiques ?

EFFICACITÉ DANS LE SEVRAGE TABAGIQUE

Received: 6 August 2021

Accepted: 15 March 2022

DOI: 10.1111/add.15889

REVIEW

ADDICTION

SSA

Non-invasive brain stimulation for smoking cessation: a systematic review and meta-analysis

Benjamin Petit¹ | Alexandre Dornier¹ | Vincent Meille¹ | Anastasia Demina¹ |

Benoit Trojak^{1,2}

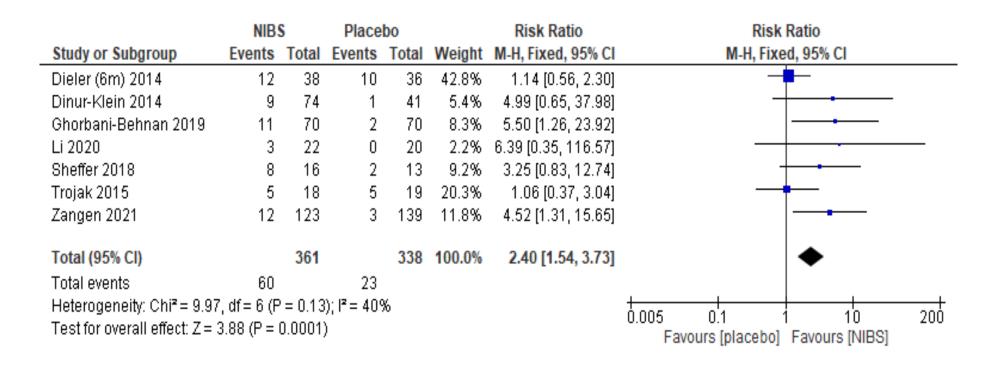
Correspondence

Dr Benjamin Petit, Department of Addictology, University Hospital of Dijon, 14 rue Paul Gaffarel, B.P. 77908, 21079 Dijon Cedex, France. Email: benjamin.petit@chu-dijon.fr Dernière méta-analyse

Intervention : NIBS

- bases de données CENTRAL, MEDLINE, Embase et PsycINFO + registres d'essais cliniques
- RCT + essais cliniques
- Follow up ≥ 4 semaines

Petit et al., 2022


¹Department of Addictology, University Hospital of Dijon, Dijon, France

²University of Burgundy, Cognition, Action et Plasticité Sensorimotrice, Dijon, France

META-ANALYSE / SEVRAGE TABAGIQUE

• Réduction des rechutes (dans les 3-6 mois)

Comparison of the point prevalence of smoking abstinence in the mid-term (3 to 6 months) in randomized sham-controlled NIBS studies (fixed effect model). Note: Dieler 6 months, Dinur-Klein 6 months, Ghorbani-Behna 6 months, Li 3 months, Sheffer 3 months, Trojak 3 months, Zangen 4 months

META-ANALYSE / SEVRAGE TABAGIQUE

Réduction des rechutes (dans les 6 mois)

NI		BS Placebo			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Dieler (6m) 2014	12	38	10	36	75.8%	1.14 [0.56, 2.30]	
Dinur-Klein 2014	9	74	1	41	9.5%	4.99 [0.65, 37.98]	
Ghorbani-Behnan 2019	11	70	2	70	14.8%	5.50 [1.26, 23.92]	
Total (95% CI)		182		147	100.0%	2.15 [1.18, 3.90]	•
Total events	32		13				
Heterogeneity: Chi² = 5.36	i, df = 2 (F	9 = 0.07	"); I³ = 639	%			0.01 0.1 1 10 100
Test for overall effect: $Z = 2$	2.50 (P =	0.01)					Favours [sham] Favours [NiBS]

Smoking cessation at 6 months:

RR: 1.55 for NRT (95% CI: 1.49 to 1.61),

RR: 1.62 for bupropion (95% CI 1.49-1.76),

RR: 2.24 for varenicline (95%CI: 2.06-2.43)

RR: 1.69 for e-cigarette (95% CI: 1.25-2.27) compared to pcb or no pharmacotherapy

PERSPECTIVES

• SCNI + TUT = 45 études

Row	Saved	Status	Study Title	Conditions	Interventions	Locations
1		Completed	Effects of rTMS on Cigarette Smoking and Cognition in Schlzephrenia	Schizophrenia Nicotine Addiction	Device: Repetitive Transcranial Magnetic Stimulation (rTMS) Device: Sham Repetitive Transcranial Stimulation (rTMS)	Centre for Addiction and Mental Health Toronto, Onterio, Ceneda
2		Completed Has Results	tDCS Effects on Resisting Smoking: Dose Ranging Study	Nicotine Addiction	Device: transcranial direct current stimulation (tDCS)	University of Pennsylvania Philadelphia, Pennsylvania, United States
3		Unknown †	Deep Transcranial Magnetic Stimulation (dTMS) to Induce Smoking Cessation	Smoking Cessation Transcranial Magnetic Stimulation	Device: Deep Transcranial Magnetic Stimulation	Incor - Instituto do Caração do HCFMUSP São Paulo, Brazil
4		Recruiting	Effectiveness of Transcranial Magnetic Stimulation (TMS) in Smoking Cessation, Combining Withdrawal Stimulation Followed by Maintenance Stimulation to Prevent Relapse	Smoking Cessation	Other: Transcranial Magnetic Stimulation sessions Other: Evaluations	Chu Dijon Bourgogne Dijon, France
5	0	Completed	Evaluation of Deep Transcranial Magnetic Stimulation (DTMS) With the H-ADD Coll as an Alid to Smoking Cascation.	- Smoking Cessation	Device: Sham Treatment Device: Active dTMS Treatment	Pacific Institute of Medical Research Los Angoles, California, United States University of cellifornia - San Diego Medical Center San Diego, California, United States TMS Center of Colorado Denver, Colorado, United States (and 15 more)
6		Completed	Enhancing Relapse Prevention for Smoking Cessation With Repetitive Transcranial Magnetic Stimulation	Smoking Cessation	Device: rTMS Active 20Hz Device: rTMS Sham	The City College of New York New York, New York, United States
7		Withdrawn	Transcranial Direct Current Stimulation in a Smoking Cascation Trial	Nicotine Dependence	Device: active transcranial Direct Current Stimulation Device: sham transcranial Direct Current Stimulation	Centre for Addiction and Mental Health (Nicotine Dependence Clinic) Toronto, Ontario, Canada
8		Completed	High-Frequency Repetitive Transcranial Magnetic Stimulation Assists in Smoking Cessation	Heavy Smoking	Device: Transcranial Magnetic Stimulation 10Hz Device: Magnetic stimulation using a special sham coil	Sheba Medical Center Ramat Gan, Israel
9	0	Recruiting	Effectiveness of Transcranial Magnetic Stimulation (TMS) in Smoking Cassation, Combining Withdrawal Stimulation Followed by Maintenance Stimulation to Prevent Relapse.	Smoking Cessation	Device: Active TCS Device: Placebo TCS Drug: nicotine treatment Other: Questionnaires	Chu Dijon Bourgogna Dijon, France

BrainsWay

Autorisation de la FDA dans le sevrage tabac à court terme

ClinicalTrials.gov (novembre 2022)

Zangen, World Psy 2021

Merci pour votre attention